3D IC與先進封裝晶片的多物理模擬設計工具
晶片。路透
【作者: 籃貫銘】
在半導體制造的發展上,除了不斷深探的微縮技術外,另一大方向便是先進封裝技術,而其重要性甚至還超過製程的微縮。因爲它不僅可以提高晶片的效能、縮小體積、降低功耗,還可以實現更多功能,爲電子產品的創新和發展帶來更多可能性。
而所謂的先進封裝(Advanced Packaging),是一種將多個晶片或元件整合到單一封裝中的技術,旨在提高效能、縮小體積、降低功耗,並實現更多功能。相較於傳統封裝,先進封裝採用更復雜的結構、材料和製程,以滿足現代電子產品對高整合度、高性能和小型化的需求。
先進封裝有以下幾個主要類型:
‧ 2.5D封裝(Interposer-based packaging):把多個晶片透過矽中介層(interposer)連接在一起,實現高密度、高效能的互連。
‧ 3D封裝(3DstackedIC):多個晶片垂直堆疊在一起,透過矽穿孔(TSV)連接,實現更小的體積和更短的訊號傳輸距離。
‧ 扇出型晶圓級封裝(Fan-out wafer-level packaging;FOWLP):將晶片重新分佈到更大的面積上,實現更高的I/O密度和更好的散熱性能。
‧ 系統級封裝(System-in-package;SiP):將多個不同功能的晶片(如處理器、記憶體、感測器等)整合到單一封裝中,實現更高的功能整合度。
所以從技術面來看,先進封裝可以應用許多的領域上,包含高效能運算(HPC)、人工智慧(AI)、5G通訊、行動裝置與物聯網設備等,以滿足這些應用對於高速、高傳輸頻寬與小體積的需求。
先進封裝晶片的設計挑戰
然而相較於傳統封裝,先進封裝技術的複雜度大幅提升,涉及到的物理現象也更加多元,尤其是將多個高性能、同質、異質的晶片進行組合和堆疊的時候。因此,多物理模擬在先進封裝設計中變得至關重要。
展開晶片先進封裝設計時,通常會面臨幾個問題,如下:
高密度、高複雜度設計
先進封裝通常會整合多個晶片,甚至不同製程的晶片,這導致電氣連接、訊號完整性、電源完整性等問題變得更加複雜;另一方面,先進封裝的結構更加複雜,幾乎皆是採行多層結構的設計,包括多層基板、多層重新分佈層(RDL)、矽中介層(interposer)等,使得熱傳導、應力分佈等問題。
多物理現象耦合
一個先進封裝晶片之中,必然會面臨多種物理現象的彼此干擾,包含電熱耦合:晶片運作時會產生大量熱量,而高溫又會影響電氣性能,因此需要同時考慮電場和溫度場的相互作用;熱應力耦合:溫度變化會導致材料膨脹或收縮,進而產生應力,應力又會影響材料的電氣和機械性能;電磁耦合:高速訊號傳輸會產生電磁干擾,影響訊號完整性。
可靠性問題
由於高密度、複雜度,加以複雜的物理場現象,因此先進封裝晶片經常會面臨可靠性的問題,包含熱失效:高溫會導致晶片和封裝材料老化、失效;機械失效:應力過大會導致晶片或封裝材料破裂、分層;電遷移:高電流密度會導致金屬導線中的原子遷移,最終導致開路或短路。
而爲了克服以上的挑戰,縮減設計的時程並增加量產的良率,進而降低整體的生產成本,因此導入多物理模擬工具就是當前必然的設計流程。它不僅可以早期發現問題,同時還可以設計優化,提升先進封裝晶片的可靠度。
【欲閱讀更豐富的內容,請參閱2024.8(第393期)多物理模擬:裝置設計新解方CTIMES雜誌】
2024.8(第393期)多物理模擬:裝置設計新解方